Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Древесина и продукты ее переработки -> Азаров В.И. -> "Химия древесины и синтетических полимеров " -> 20

Химия древесины и синтетических полимеров - Азаров В.И.

Азаров В.И., Буров А.В., Оболенская А.В. Химия древесины и синтетических полимеров — СПбЛТА, 1999. — 628 c.
Скачать (прямая ссылка): himiyadrevesiniihimpolimerov1999.djvu
Предыдущая << 1 .. 14 15 16 17 18 19 < 20 > 21 22 23 24 25 26 .. 244 >> Следующая

Высокая энергия связи углерод-фтор влияет на повышение химической и термической стойкости фторполимеров по сравнению с соответствующими карбо- или гетерополимерами. Энергия связи углерод-хлор меньше, чем углерод-водород, и поэтому, например, поливинилхлорид обладает меньшей химической и термической стойкостью, чем его аналог полиэтилен. А энергия связи углерод-бром или иод еще меньше, чем углерод-хлор, и полимеры, содержащие бром и иод, отщепляют последние даже при невысоких температурах. Поэтому из галогенпроизводных полимеров наибольшее значение получили фтор- и хлорсодержащие полимеры.
Поливинилфторид (-CH2-CHF-)„ получают полимеризацией газообразного винилфторида под давлением (25,3...30,4 МПа) в присутствии, чаще всего, пероксида бензоила, либо блочным, либо эмульсионным методами. Поливинилфторид имеет высокую температуру плавления (около 200°С), в органических растворителях до 100°С не растворяется, выше этой температуры растворяется в апротонных растворителях типа диме-тилацетамид, диметилформамид и др. Поливинилфторид, впрочем как и другие фторполимеры, обладает прекрасной химической стойкостью, эластичностью и морозостойкостью. Полимер не теряет пластичности до -180°С.
Политетрафторэтилен (-CF2-CF2-)„ получают полимеризацией тетрафторэтилена, который легко полимеризуется под действием пероксидов и гидропероксидов. Процесс полимеризации сильно экзотермичен, поэтому его проводят в водной среде и в растворителях, при давлении до 5,1 МПа, в автоклавах. Из реакционной среды полимер выделяется в виде белых частиц, которые практически ни в чем не растворяются до 300°Q выше этой температуры - в фторированных углеводородах . Полимер обладает самой высокой стойкостью к агрессивным средам, на него не действуют даже плавиковая, серная и другие кислоты. Полимер имеет темпера-
56
туру плавления кристаллической фазы около 325°С, а выше 350°С он разлагается с выделением вредных фторпроизводных и чистого фтора. Это самый тяжелый из всех известных полимеров (плотность 2100..2300 кг/м3), он обладает очень высокой морозостойкостью (не теряет пластичности при -269°С).
Поливинилхлорид (-СН2-СНС1-)П получают радикальной полимеризацией винилхлорида, например, под действием света, чаще всего водно-эмульсионным или водно-суспензионным методами. Полимеры винилхлорида растворяются в галогенпроизводных углеводородов и не стойки к действию ионизирующих излучений. При длительном хранении полимер желтеет и деструктируется с выделением вредных веществ. Окислительные агенты действуют на него разрушительно. Изделия из поливинилхлорида имеют высокую поверхностную твердость и достаточно хрупки, поэтому для получения пленочных материалов его пластифицируют сложными эфирами. Даже пластифицированный поливинилхлорид имеет невысокую морозостойкость.
3.1.3. Полимеры акриловой и метакриловой кислот и их производных
Все полимеры и сополимеры акриловой и метакриловой кислот и их производных называют полиакрилатами. Для получения полиакрилатов используют кислоты, акриловую СН2=СН-СООН, метакриловую СН2=С(СНз)-СООН, их эфиры, например, метилметакрилат СН2=С(СНз)СООСНз, бутилметакрилат СН2=С(СНз)СООС4Н9, а также ак-риламид CH2=CH-CONH2, акрилонитрил CH2=CH-CN.
Акриловые мономеры легко вступают в реакции полимеризации и сополимеризации друг с другом и другими мономерами. Акриловая кислота полимеризуется в присутствии кислорода воздуха .Катализаторы ионной полимеризации присоединяются к акриловой кислоте и дезактивируются. В присутствии пероксидов и гидропероксидов акриловая кислота легко полимеризуется. Лучшими условиями для полимеризации является водная среда, в которой растворим и мономер, и полимер. Полиакриловая кислота имеет линейное строение, аморфную структуру, является твердым и хрупким веществом даже при повышенных температурах (220.. ,230°С).
Метакриловая кислота полимеризуется хуже, чем акриловая, но при хранении под действием кислорода наблюдается постепенная ее полимеризация. Полиметакриловая кислота, как и полиакриловая, представляет собой твердое матово-белое вещество, не растворимое в неполярных растворителях, но растворимое в воде. Полиакриловую и полиметакриловую кислоты используют в качестве полиэлектролитов, эмульгаторов, а их соли
57
как загустители.
Полиметилметакрилат [-СН2-С(СН3)СООС1^-]„ получают полимеризацией мономера в присутствии инициаторов или катализаторов. Метилметакрилат при хранении под действием кислорода и солнечного света полимеризуется, поэтому в него вводят ингибиторы. Полиэфиры кислот в отличие от полимерных кислот не растворимы в воде, но растворимы в органических растворителях, таких как сложные эфиры, кетоны, ароматические углеводороды и галогенпроизводные углеводородов. Полиметилметакрилат получают блочным и эмульсионным методами. Это прозрачный, даже в толстом слое, полимер, который используется для получения оптически прозрачных стекол. Полиметилметакрилат устойчив к действию растворов кислот и щелочей, не растворяется в бензине и маслах, легко обрабатывается механическим способом, при температурах
Предыдущая << 1 .. 14 15 16 17 18 19 < 20 > 21 22 23 24 25 26 .. 244 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама