Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Древесина и продукты ее переработки -> Азаров В.И. -> "Химия древесины и синтетических полимеров " -> 51

Химия древесины и синтетических полимеров - Азаров В.И.

Азаров В.И., Буров А.В., Оболенская А.В. Химия древесины и синтетических полимеров — СПбЛТА, 1999. — 628 c.
Скачать (прямая ссылка): himiyadrevesiniihimpolimerov1999.djvu
Предыдущая << 1 .. 45 46 47 48 49 50 < 51 > 52 53 54 55 56 57 .. 244 >> Следующая

Плотность упаковки кристаллических полимеров, которую характеризуют коэффициентом молекулярной упаковки - отношением объема, занятого макромолекулами, к общему объему, - всегда ниже, чем у низкомолекулярных кристаллов, и составляет 0,65 ...0,73 .
У кристаллических полимеров но сравнению с низкомолекулярными кристаллическими веществами более развит полиморфизм существование у одного и того же полимера нескольких полиморфных (кристаллических) модификаций с разными элементарными ячейками, в зависимости от условий образования.
Все эти особенности приводят к трудности установления границы между кристаллическим и высокоупорядоченным аморфным состояниями и к противоречиям в трактовании структуры кристаллических полимеров. Кристаллические полимеры настолько разнообразны, что описать их в рамках одной теории невозможно. Сте пен ь кристалличности поти-
138
меров - доля кристаллической части, выражаемая обычно в процентах, лежит в очень широких пределах от 10 до 90% . В зависимости от степени кристалличности все кристаллические полимеры условно подразделяют на два типа: полимеры со степенью кристалличности намного меньше 100°/о и полимеры со степенью кристалличности, близкой к 100%.
Полимеры первого типа рассматривают как двухфазные системы (аморфно-кристаллические полимеры). Различают фибриллярные (волокнистые) полимеры и полимеры, не имеющие волокнистого строения. Типичный представитель фибриллярных аморфно-кристаллических полимеров - целлюлоза, которая образует природные растительные волокна. В ф (б риллах все оси кристаллитов ориентированы в одном направлении. Структуру таких полимеров, в том числе целлюлозы, описывают моделью «бахромчатой» фибриллы (рис. 5.7; также см. 9.4.2 и рис. 9.3). Фибриллы состоят из чередующихся кристаллических участков (кристаллитов) и аморфных участков. Резкой фазовой границы, и тем более поверхности раздела, между участками нет, т.е. фазы следует рассматривать в структурном понимании. В синтетических аморфно-кристаллических блочных полимерах оси кристаллитов не имеют одного направления, и кристаллиты как бы вкраплены в аморфную фазу. С современных позиций структура аморфно-кристаллических полимеров хорошо укладывается в рамки кластерной теории. Кристаллиты - это кластеры с максимальной степенью упорядоченности, т.е. имеющие кристаллическую решетку, соединенные проходными макромолекулами, образующими аморфные участки.
Рис .5 7 .Схема строения аморфно кристаллического полимера (фрагмен -ты двух фибрилл); «бахрома» - макромолекулы, переходящие из фибриллы в фибриллу (переходные макромолекулы)
Полимеры второго типа со степенью кристалличности, близкой к 100%, рассматривают как однофазные кристаллические системы с дефектами кристаллической решетки. Процесс кристаллизации - упорядочения макромолекул - идет постепенно, по стадиям, с образованием промежуточных элементов надмолекулярной структуры. Возможны два
139
механизма кристаллизации: пластинчатый и фибриллярный. При пластинчатом механизме образуются пластинчатые монокристаллы - наиболее совершенная форма кристаллизации полимеров. Такие монокристаллы получены у полиэтилена, полипропилена, поликапрамида, ацетата целлюлозы и ряда других полимеров. Они получаются при кристаллизации из очень разбавленных растворов (с массовой долей полимера 0,01...0,1%). При кристаллизации по фибриллярному механизму в качестве элементов надмолекулярной структуры образуются кристаллические фибриллы (микрофибриллы). Следует отметить, что фибриллы однофазного кристаллического, аморфно-кристаллического и однофазного аморфного полимеров по внешнему виду в электронном микроскопе практически не различимы, но существенно различаются по структуре, что можно установить с помощью рентгеноструктурного анализа.
Точные механизмы образования кристаллических полимеров еще не установлены. В соответствии с теорией Каргина, при кристаллизации по пластинчатому механизму сначала макромолекулы укладываются в пачки, которые первоначально имеют аморфную структуру; затем в пачках происходит кристаллизация, т.е. необходимый поворот звеньев, с образованием кристаллической решетки. Далее пачки многократно складываются в ленты, ленты укладываются в плоские пластины (оси макромолекул оказываются перпендикулярными к плоскости пластин), а пластины, наслаиваясь друг на друга, образуют пластинчатый кристалл. При кристаллизации по фибриллярному механизму из кристаллических пачек или лент образуются фибриллы.
По мнению исследователей, отрицающих пачечную теорию Каргина, в процессе кристаллизации из макромолекул образуются закристаллизованные кластеры в виде ламелл (тонких пластин). Конформация макромолекул чаще всего складчатая (рис. 5.8, а). Из ламелл строится монокристалл. Возможно образование монокристаллов из выпрямленных или спиральных цепей, а также монокристаллов, в которых существуют участки одновременно из складчатых цепей и проходных макромолекул -структура «шиш-кебаба» («шашлыка»), показанная схематически на рис. 5.8, б.
Рис. 5.8. Структурные образования в кристаллических полимерах: а - пластина со складчатыми цепями; 6 - структура типа «шиш-кебаб»
Предыдущая << 1 .. 45 46 47 48 49 50 < 51 > 52 53 54 55 56 57 .. 244 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама