Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Электрохимия -> Абрагам А. -> "Электронный парамагнитный резонанс переходных ионов Том 2" -> 16

Электронный парамагнитный резонанс переходных ионов Том 2 - Абрагам А.

Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов Том 2 — М.: Мир, 1973. — 350 c.
Скачать (прямая ссылка): elektronnieparametri1973.djvu
Предыдущая << 1 .. 10 11 12 13 14 15 < 16 > 17 18 19 20 21 22 .. 123 >> Следующая


Поэтому правильнее говорить, что представления Di являются представлениями группы Uy или группы матриц и = Dlfi. Каждой матрице и этой группы соответствуют только одно пространственное вращение Ru и единственная матрица Di(Ru) при каждом значении /. С другой стороны, двум матрицам и и —и, отличающимся знаком, отвечают одно и то же вращение Ru, только одна матрица Di(Ru) при / целом и две противоположные по знаку матрицы ±Di(Ru) при / полуцелом.

Полезно знать выражения матричных элементов D1mm^(R), которые, согласно формуле (13.5), определяют преобразование волновых функций xVj^m = I /, tn), описывающих в случае свобод- гл. 13. группа вращений

47

ного иона состояния с определенным значением энергии и являющихся поэтому удобным исходным пунктом при исследовании связанного иона. Матричные элементы в случае / = 1I2 приведены в равенстве (13.8). При больших значениях j их аналитические выражения становятся громоздкими, и мы снова отсылаем читателя к соответствующим таблицам. В крайнем случае эти матричные элементы можно вычислить, используя следующие наметки. Из соотношения

DLmiа, ?, y) = (jm' Ie~iaIze~^Jye~iyJzI jm) =

= е-Цат'+ут)(1т'\е-*'уI jm) = e~l(am+Ym)Z?m'm(0, ?, 0) (13.15)

следует, что необходимо вычислять только более простую величину dmm'(?) == oLz'tо, ?, 0). Вычисление существенно упроща-ется, если иметь в виду приводимое ниже утверждение (мы сформулируем его без доказательства). Пусть \ и г\—две компоненты двумерного вектора, который преобразуется с помощью матриц D4t. Можно показать, что 2/ + 1 величин

^f+m^f-m

T(j + m)\(j-m)f9

где т принимает значения /, /— 1, ..., —/, преобразуются при поворотах посредством матриц Dimnt>. Отсюда и вытекает метод вычисления последних, если известны матрицы ?>/а.

Характеры представления Di проще всего вычислить, если рассмотреть повороты на угол <р вокруг оси г. Повороты на тот же угол ф вокруг другой оси относятся к тому же классу и обладают теми же характерами. Оператор R записывается в виде ехр (—/ф/z) > и

Dbm(R) =6тт>Є-іт\

так что

х'(ф)= І (13.16)

§ 3. Сложение моментов

Коэффициенты Клебша — Гордана и Вигнера Сложение угловых моментов представляет собой один из наиболее известных законов физики. Если заданы два момента Ji и j2, собственные значения которых равны /і и /2, то вектор j = ji + І2 обладает собственными значениями / = j\ + /2, /1 + /2— U ...» I/± — /21. В частности, величина j может оказаться равной нулю, только если /і = /V 48 часть III. теоретический обзор

С точки зрения теории представлений это имеет следующий смысл. Рассмотрим два набора волновых функций Чr/im, = = IZ1An1) и yVj2Jn2 = I І2т2)у являющихся базисами представлений SDh и SDh. Набор всевозможных произведений 1FJltriiW/2/П2 является базисом для представления Это представление приводимо и разлагается на следующие неприводимые представления:

SDu X ^Dh = ?>il+h + SDu+h~x + ... -\-2DUi~iA. (13.17)

Важно отметить, что каждое представление SDi с индексом, удовлетворяющим условию

l/l -/2 К/ < /l +/2,

содержится в разложении (13.17) только один раз.

Равенство (13.17) носит символический характер. В матричной форме оно запишется в виде

S(DflXDl2)S~l = Dh+h + ... +Dlw2', (13.18)

где S — унитарная матрица, преобразующая базисные состояния |/іті)|/2т2) представления

Dh X Dh в базисные состояния \hhim)> по отношению к которым матрицы представления SDuX^h записываются в приведенной, квазидиагональной форме

/D>'+h \

' • • (13.19)

V ' D1

Элементы матрицы S обозначаются посредством очевидных символов (/і/Пі, /г/ПгІ/і/г, jm), известных в литературе как коэффициенты Клебша — Гордана. Их свойства всесторонне изучены и составлены таблицы их численных значений, поэтому мы очень кратко остановимся на этом вопросе. Согласно правилу векторного сложения, они обращаются в нуль, если нарушается условие і/і — /г i ^ / s^/і + /2; они равны нулю также, если т ф nii + /^2- Это происходит потому, что вращение на угол qp вокруг оси z умножает состояние |/imi)|/2m2) на ехр [—i(m,i -f-+ /п2)ф], а состояние |/, т) — на ехр(—ітц).

Фазы различных базисных векторов можно выбрать так, чтобы коэффициенты Клебша — Гордана были вещественными, и это обстоятельство отнюдь не тривиально. Из унитарности матрицы S следуют очевидные соотношения ортогональности для гл. 13. группа вращений 49

коэффициентов Клебша — Гордана, как, например,

2 {ІХІ2ЩЩ \Шт) {ІхІ2Щгп2\Ш'т) = б/у. (13.20)

Ш\Ш2

Коэффициенты Клебша — Гордана обладают довольно сложными свойствами симметрии, которые лучше всего демонстрируются путем введения родственных коэффициентов, называемых коэффициентами Вигнера, или 3/-символами, которые обозначаются

fix І2 /з \

\tщ т2 т3 J9

причем mi + m2 + m3 = 0, и определяются соотношением

(/1 /2 / з А (_n/i—/2—

«І "і *нП vkTT hk 1* - ъ). (13-21)

Коэффициенты Вигнера обладают очень простыми свойствами симметрии, которые легко запомнить. При перестановке двух столбцов коэффициент Вигнера умножается на (—1)/і+/2+/з то же имеет место при замене mi, m2, т3 на —miy —m2, —т3. Отсюда можно получить более сложные свойства симметрии коэффициентов Клебша — Гордана, если использовать равенство (13.21). Следует отметить, что
Предыдущая << 1 .. 10 11 12 13 14 15 < 16 > 17 18 19 20 21 22 .. 123 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама