Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Электрохимия -> Абрагам А. -> "Электронный парамагнитный резонанс переходных ионов Том 2" -> 27

Электронный парамагнитный резонанс переходных ионов Том 2 - Абрагам А.

Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов Том 2 — М.: Мир, 1973. — 350 c.
Скачать (прямая ссылка): elektronnieparametri1973.djvu
Предыдущая << 1 .. 21 22 23 24 25 26 < 27 > 28 29 30 31 32 33 .. 123 >> Следующая


B2 =± 1. (15.12)

§ 3. Определение оператора обращения времени

Вначале мы не будем учитывать спина. Тогда динамическими переменными являются координаты X и импульсы pXf которые при обращении времени должны преобразовываться следующим образом:

Q-lXQ=Xt Q-lpxQ = -pXi или (15.13)

xQ = 0л:, pxQ = — Qpx. гл. 15. обращение времени и крамерсово вырождение . 77

Отсюда после подстановки выражения 0 = UKo получим

xUK0 = UK0Xi PxUK0 = - UKoPx,

і і (15.14)

xU = Mo"1, PxU = - UKoPxKo'1.

Возьмем координатное представление, в котором х вещественно, т.е. х = Ко%Ко\ a Px — чисто мнимый оператор, так что рх = — КорхКо1. Тогда по формулам (15.14) получаем

XU = Uxt PxU = Upx. (15.15)

Таким образом, оператор U коммутирует со всеми динамическими переменными X и рх, и поэтому он должен быть постоянной, которую мы можем выбрать равной единице. В отсутствие спина в координатном представлении (но не в импульсном!) оператор обращения времени 0 совпадает с оператором комплексного сопряжения Ко-

Рассмотрим теперь один электрон, учитывая и его спин. Три компоненты sq оператора спина меняют свой знак при обращении времени и поэтому должны удовлетворять соотношениям

= - 0^0-1, 5^0 = - Qsqi (15.16)

что приводит к равенству

SqUK0 = -UK0Sqt

или (15.17)

SqU = -UKtfqKt1.

так что

sqU = — U s*q. (15.18)

В обычном представлении, в котором Sx и Sz — вещественные матрицы, a Sy — чисто мнимая матрица, оператор U должен антикоммутировать с Sx и Sz и коммутировать с Sy. Мы можем взять в качестве U унитарную матрицу оу = 2Syi удовлетворяющую этим требованиям, или, еще лучше, матрицу іаУі преимущество которой заключается в том, что она вещественна и поэтому коммутирует с Ко- Так мы и сделаем. В итоге получаем, что в представлении, в котором г диагонально (координатное представление) и Sx и Sz вещественны, оператор обращения времени для одного электрона можно представить в виде

Q = IoyK0. (15.19)

Квадрат его равен —1:

G2 = {lay) Ко (ioy) Ко = (Ioy)2Kl = -1. (15.20) 78

часть iii. теоретический обзор

Оператор обращения времени для п электронов 1,2, ...,/г

представляет собой произведение

п

9 = П Qp- (15.21)

Особенно важным результатом является то, что квадрат его равен ±1 в зависимости от четности числа электронов.

§ 4. Крамерсово вырождение

Рассмотрим систему с нечетным числом электронов, для которой G2 = —1, и предположим, что ее гамильтониан коммутирует с G. Так будет в отсутствие магнитного поля, поскольку при этом кинетическая и потенциальная энергии, а также спин-спиновые и спин-орбитальные взаимодействия инвариантны относительно обращения времени. Пусть 4я— стационарное состояние системы с энергией W\ тогда функция Ф = GxF также описывает стационарное состояние с той же энергией. Рассмотрим скалярное произведение (xFjO) = (xFjGO). Поскольку G — антилинейный оператор, то

(xF, (D) = OF, 940 = (94', 02xF)* = (92xF, 940 = - OF, 940 = 0,

т.е. состояние Ф ортогонально 4я и поэтому, естественно, отличается от нее.. Отсюда вытекает, что уровень W по крайней мере двукратно вырожден. В этом заключается теорема Крамерса.-Мы будем называть состояние Ф = 94я крамерсово сопряженным C1Fh обозначать его символом 4r. ,

Со свойствами оператора 9 связано несколько полезных соотношений. Будем называть оператор О нечетным по времени (Г-нечетным), если 909-1 = —Ot; аналогично оператор О четен по времени (Г-четен), если 909"1 =+Ot. Если О — эрмитов оператор, то Ot= О, но иногда удобно использовать неэрмитовы операторы типа L± или /±.

В этой связи следует отметить, что произведение двух не-коммутирующих эрмитовых операторов А и В с определенной четностью по времени (например, оба Г-четных) не обладает определенной четностью, а является суммой Г-четного и Г-нечетного операторов:

AB = у (AB + BA) + ~ (AB - BA) = C + D9

где С — эрмитов оператор, a D — антиэрмитов, и

QABQ'1 = 9С9""1 + QDQ'1 = С + D = Ct - Df.

Поэтому С — Г-четный, a D — Г-нечетный операторы. гл. 15. обращение времени и крамерсово вырождение .

79

Спин-спиновые и спин-орбитальные взаимодействия, являющиеся эрмитовыми произведениями Г-нечетных операторов, Г-четны.

Если G2 = —1, то справедлива следующая теорема.

а) Г-четный оператор не имеет отличных от нуля матричных элементов между двумя, крамерсово сопряженными состояниями, так как

(WIOIxF) = (xF, ОЄ?) = (ЄОЄ?, 040 = -(000"^, GxF) =

= - (OtxF, GxF) = - (xF | О | ?) = 0. (15.22а)

б) Средние значения Г-четного оператора в крамерсово сопряженных состояниях совпадают, поскольку

(Ч?\ О (xF) = OF, 040 = (60^, 94^) = (009""^^, GxF) =

= (O+0W, 0^) = (0^, OGxFJ = (xFIOIxF). (15.226)

в) Средние значения Г-нечетного оператора в крамерсово сопряженных состояниях противоположны по знаку. Доказывается это утверждение аналогично (б).

Если G2 = +1, то обращение времени играет гораздо менее важную роль, поскольку в этом случае состояние xF может совпадать с обращенным по времени состоянием xF = OxF. Аналогами предыдущих утверждений (а) — (в) являются следующие:
Предыдущая << 1 .. 21 22 23 24 25 26 < 27 > 28 29 30 31 32 33 .. 123 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама