Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Электрохимия -> Абрагам А. -> "Электронный парамагнитный резонанс переходных ионов Том 2" -> 29

Электронный парамагнитный резонанс переходных ионов Том 2 - Абрагам А.

Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов Том 2 — М.: Мир, 1973. — 350 c.
Скачать (прямая ссылка): elektronnieparametri1973.djvu
Предыдущая << 1 .. 23 24 25 26 27 28 < 29 > 30 31 32 33 34 35 .. 123 >> Следующая


§ 6. Спиновый гамильтониан для крамерсова дублета

Рассмотрим парамагнитный ион с нечетным числом электронов, окружение которого обладает достаточно низкой симметрией, так что основной уровень вырожден лишь вследствие теоремы Крамерса. Это будет иметь место при любой симметрии ниже кубической, а также в случае кубической симметрии для уровней Г6 и Г7.

Базисом этого вырожденного крамерсова дублета служат два вектора состояния и |f) = 0|g), которые выбираются произвольным образом. Мы всегда можем выбрать два других базисных состояния, связанных с предыдущими соотношениями вида

li->—IO+WD.

IIO-SII')'--6-||> + а-||),

причем + Матрица перехода в соотношениях

(15.30) не только унитарна, но и унимодулярна, и, как было показано в гл. 13 при исследовании группы вращений, мы можем поставить ей в соответствие некоторое вращение R по формуле (13.4) и следующим за ней формулам гл. 13, § 2.

Вырождение крамерсова дублета может быть снято лишь магнитным полем, приложенным извне или созданным магнитным моментом IlI = —упЬ1 ядра, если этот момент-отличен от нуля. Соответствующие энергии можно написать в виде —ju,e-H и —Iii- He, где векторные операторы \ie и He соответствуют магнитному моменту иона и магнитному полю, созданному электронами иона в месте нахождения ядра. Если предположить, что каждое из взаимодействий намного меньше интервала между дублетом и возбужденными уровнями, то нам нужно знать лишь матричные элементы этих взаимодействий между состояниями дублета. Известно, что всякая эрмитова матрица второго порядка может быть представлена в виде линейной комбинации с вещественными коэффициентами трех матриц Паули и единичной матрицы. Поскольку все компоненты векторов її и He являются Г-нечетными операторами, то их средние значения в состояниях и ||) имеют противоположные значения [теорема (в) § 4 этой главы], и мы можем представить компоненты ц гл. 15. обращение времени и крамерсово вырождение . 83

Heg в видє

Pq= — "2" S 8яаРа>

(15.31)

Heq = 2 GLqaPa*

а

где вклад единичной матрицы отсутствует. Индексы q различают X-, у- и 2-компоненты векторов |i и He, а индекс а — матрицы Паули 01, 02 и 0з. Совокупность матриц 0i/2, а2/2, аз/2 часто называют компонентами фиктивного спина s, а совокупности вещественных чисел gqa и agct называют гиромагнитным тензором и тензором сверхтонкой структуры. Глубоко укоренившаяся привычка называть gqa и aqoL тензорами обусловлена тем, что фиктивный спин а/2 крамерсова дублета можно спутать с настоящим электронным спином, и, как мы сейчас увидим, является, вообще говоря, серьезной терминологической ошибкой.

Существуют два типа преобразований, которые приводят к изменению совокупности чисел gqa (и aqa). Первый из них — пространственное вращение S осей координат, при котором компоненты \ля заменяются на

^ = IlSqplXp (15.32)

и, следовательно,

^a= 2 Sqpgpa. (15.33)

Другой тип преобразований — это преобразование базисных состояний ||) и |1) по формулам (15.30), которое вследствие математического соответствия между матрицей а унитарной группы U и вещественной ортогональной матрицей- R группы вращений приводит к следующей подстановке:

или Vjr^ (15.34)

что влечет зач собой преобразование

g;,= 2 RyaSpa- (15.35)

Если мы совершенно произвольно условимся всегда связывать с пространственным поворотом координатных осей S, описываемым формулой (15.32), преобразование (15.30) базисных состояний, которому отвечает матрица R в формулах (15.34), совпадающая с матрицей поворота S, то в этом и только в этом случае числа gqa (и aqa) будут преобразовываться как компоненты тензоров. Однако когда мы находим собственные значения зеема-новского гамильтониана — ц-Н, то появляется истинный тензор 84

часть iii. теоретический обзор

Gvq. Обозначим через Xx, hy, Xz направляющие косинусы вектора Н. Тогда в соответствии с формулой (15.31) получим

- ^ ' H = 2 ! Hq8q*u* = 2 "Т" Хя8да<*а = Щ- 2 <*Ja, (15.36)

q, а <7, а а

где fa = S 4?<7а-

q

Собственные значения гамильтониана (15.36) можно получить, используя известные свойства матриц Паули

г. ¦= ± Ц- (2 /і)* - ± ? (S м. S w«.""=

\ a / q a /

= (15-37)

\Р, <7 /

Совокупность чисел

Gpq=4Lgpagqa (15.38)

a

действительно является симметричным тензором, обладающим правильными трансформационными свойствами относительно пространственных вращений, и этот тензор всегда можно диаго-нализовать, подходящим образом выбирая оси координат. Все его собственные значения положительны, и квадратные корни из них определяют три главных значения ларморовских частот электронного спина во внешнем поле Н. Аналогично можно определить тензор Apq = 2 apaaqa.

a

Из сказанного о «тензоре» gqa следует, что вопрос о его симметричности несуществен. Поскольку мы располагаем шестью параметрами: тремя, соответствующими пространственному вращению S в формуле (15.33), и тремя, соответствующими фиктивному вращению R в формуле (15.35), то у нас достаточно возможностей для диагонализации «тензора» gqa. Записав «тензор» g в диагональной форме gь g*2, всегда можно изменить знаки двух его компонент, скажем gi и g3, поворотом на угол я вокруг оси у (или посредством замены Oi и O3 на —Oi и —0з при соответствующем преобразовании базисных состояний). С другой стороны, произведение gig2g3 — определитель матрицы gqa — является инвариантом.
Предыдущая << 1 .. 23 24 25 26 27 28 < 29 > 30 31 32 33 34 35 .. 123 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама