Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Электрохимия -> Абрагам А. -> "Электронный парамагнитный резонанс переходных ионов Том 2" -> 30

Электронный парамагнитный резонанс переходных ионов Том 2 - Абрагам А.

Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов Том 2 — М.: Мир, 1973. — 350 c.
Скачать (прямая ссылка): elektronnieparametri1973.djvu
Предыдущая << 1 .. 24 25 26 27 28 29 < 30 > 31 32 33 34 35 36 .. 123 >> Следующая


Если диагонален «тензор» gPoLJ то, разумеется, диагонален и тензор Gpq, поскольку, согласно формуле (15.38),

Gxx = Slv Gyy = gl2, Gzz = Sly (15.380

Аналогично с помощью двух других вращений R' и S' мы можем диагонализовать «тензор» сверхтонкого взаимодействия aPa- Уместно спросить теперь, можно ли одновременно диагона- гл. 15. обращение времени и крамерсово вырождение . 85

лизовать оба «тензора», gqa и аяа, с помощью одних и тех же поворотов R и S, т. е. при одном и том же выборе координатных осей и базисных состояний?

До сих пор мы не касались вопроса о пространственном окружении нашего иона. При определенных допущениях относительно симметрии этого окружения мы найдем ситуации, в которых «тензоры» gqa и aqa могут быть диагонализованы одновременно. Например, если взаимодействие с окружением мало по сравнению с интервалом между двумя 7-мультиплетами свободного иона, мы можем предположить, что волновые функции нашего крамерсова дублета могут быть составлены из волновых функций только одного уровня J свободного иона (это возможно для редкоземельных ионов, но для ионов группы железа это, вообще говоря, не так). Тогда, согласно теореме Вигнера — Эккарта, все матричные элементы компонент любого вектора, в частности векторов jli и He, между состояниями дублета будут пропорциональны соответствующим матричным элементам вектора J. «Тензоры» gqa и aqa оказываются пропорциональными друг другу и могут быть диагонализованы одновременно.

§ 7. Ромбическая группа

Предположим, что окружение иона обладает двумя осями второго порядка, z и у (тогда неизбежно имеется и третья, ось х). Покажем, что в этом случае gqa и aqa можно диагонализо-вать одновременно.

Разложим одно из базисных состояний крамерсова дублета по стационарным состояниям I/, М) свободного иона (i = а, J, М):

U)= 2 Сі I а, J,M), (15.39)

а, /, M

где оператор Jz = M квантован вдоль бинарной оси z. Значения M в этом разложении являются полуцелыми и вследствие бинарной симметрии отличаются друг от друга по меньшей мере на две единицы, вследствие чего в сумме (15.39) не могут одновременно встретиться значения M и —М.

Матричные элементы (&|м*Ю = г*з и (&IS) = обращаются в нуль, поскольку операторы [ix и \ху подчиняются правилу отбора |ДЛ1| = 1. Для нахождения остальных матричных элементов возьмем в качестве R поворот R = ехр (inJy). Тогда в соответствии с равенствами (15.26) и (15.29) крамерсово сопряженное состояние ||) определяется выражением

11) = 0 ID = ZWCoI D = 2 Cl (-IJ7-aiI а, /, -М>. (15.40)

а, 7, M 86

часть iii. теоретический обзор

Очевидно, что величина (?| \iz\ I) = gzi — igz2 обращается в нуль, поскольку оператор \л2 подчиняется правилу отбора |ДЛ1| = 0. Так как ось у является бинарной осью, то R\?>)— стационарное состояние с той же энергией, что и состояние и, очевидно, ортогонально ему. Поэтому оно должно совпадать с состоянием ||) = /?/Со||) с точностью до фазового множителя, и все коэффициенты Ci в равенстве (15.39) могут быть выбраны вещественными. Таким образом, мы получаем соотношения

R 16) = 9 І?) = ІІ), Gl = GIR\

и, следовательно,

G IhJ !> = -<? I /T1M? Ii) =IRy^xR2 ID = (ІI ID»

поскольку R2 — —1. Следовательно, величина должна быть вещественной, а так как она равна gxі — igx2, то gX2 обращается в нуль. Аналогично находим, что

Syx - igy2 = & IHyІ І) = ~ (І IНу ID-

Ш HvIi) — мнимое число, и gyi равняется нулю. Поэтому при нашем выборе базисных состояний и осей координат «тензор» gqa оказывается' диагональным. Поскольку мы не делали никаких допущений относительно вектора її, кроме того, что это Г-нечетный вектор, то же самое, очевидно, справедливо и для «тензора» aqa, связанного с He.

§ 8. Тригональная симметрия

Тригональная симметрия C3 является примером условий, при которых может оказаться невозможной одновременная диагона-лизация «тензоров» gqa и aqa.

Рассмотрим систему, симметрия которой ограничена осью третьего порядка г, и предположим, что разложение (15.39) содержит член с M = +v2. Остальные значения M в разложении будут типа +(v2) + Зр с целым р. Аналогично разложение состояния Ii) содержит значения M = —(v2) + 3р'. Это накладывает следующие условия на «тензор» g:

GIMD = ?*3 = 0, (15.41)

Ш hJD = ?23 = ?„

и

(SlHzIi)^ftrt-'гг2 = 0,

<6 IhJ D = (61(и, - Фу)І І) = gxX - igX2 -1 (gyi - ад = 0.

(15.42) гл. 15. обращение времени и крамерсово вырождение .

87

Из соотношений (15.42) получаем

gzl = §z2 = О,

gxi = gy2 = g\ (15.43)

gx2 = — gyl=g".

Итак, «тензор» g имеет вид

g' g" О N

-g" g' 0 , (15.44)

О ' 0 gj

и его можно диагонализовать с помощью поворота 5 системы координат вокруг оси Oz на угол Ф, такой, что tg Ф = —g''/g'. В результате g записывается в виде

(15.45)

где ^21 = g'2 +

Точно так же «тензор» сверхтонкого взаимодействия вначале записывается как

а' а" 0 \

-я" of 0 j (15>4б)

О 0 a J

и затем с помощью поворота координат вокруг оси Oz на угол Чг, такой, что tg W = —а"\а\ приводится к диагональному виду
Предыдущая << 1 .. 24 25 26 27 28 29 < 30 > 31 32 33 34 35 36 .. 123 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама