Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Электрохимия -> Абрагам А. -> "Электронный парамагнитный резонанс переходных ионов Том 2" -> 32

Электронный парамагнитный резонанс переходных ионов Том 2 - Абрагам А.

Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов Том 2 — М.: Мир, 1973. — 350 c.
Скачать (прямая ссылка): elektronnieparametri1973.djvu
Предыдущая << 1 .. 26 27 28 29 30 31 < 32 > 33 34 35 36 37 38 .. 123 >> Следующая


Zav. ? = (^a l^? I yPy) = (ЄТа, F?TY) = (9F?TY, e2Ta)j=

= (9^9"^^, Q2Va) = EQEviVlwyi Та) = єеєк (TY, F?Ta)=--

= 868K (TY I Vp I Ta) = EQEvZyat ?. (15.54p Поэтому можно записать равенство

ZaY> ?=-2-(ZaY, ? + ZveQ^ya. ?)- (15.55)

ОтсюДа вытекает, что в зависимости от знака єує0 = ±1 величина Zayt ? относится к представлению [Г X HsX Г' или [Г X

X Па X г'.

Чтобы эти матричные элементы, а следовательно, и элементы Yay ? = (Ta I I Ty) не обращались все тождественно в нуль, единичное представление должно содержаться либо в произведении [Г X Hs X Г', либо в [Г X Г]а X Г' (в зависимости от знака е0еу), а не просто в произведении (Г X ПХГ", как утверждалось в гл. 12, § 6. Это в свою очередь приводит к тому, что представление Г' должно содержаться либо в [Г X либо в [Г X Па в зависимости от знака EeEv-

Проиллюстрируем эти результаты на нескольких примерах. В гл. 13, § 5 мы с помощью теоремы Вигнера — Эккарта доказали, что в пределах /-мультиплета каждый вектор V пропорционален угловому моменту J

V = aJ, (15.56)

где константа а должна быть вещественной для эрмитовых операторов V. Так как вектор J Г-нечетен," то таким же должен быть и вектор V, Ev = —1. Поскольку оператор V преобразуется по представлению D1 группы вращений, то условием неравенства нулю матричных элементов (JM\V$\JM') является наличие Di в разложении произведения DjXDji и это условие, конечно, выполняется при / ф 0, как показывает соотношение (13.17). Наша теорема, однако, говорит о большем: если / — гл. 13. обращение времени и kpamepcobo вырождение 91

полуцелое число, то ее = —1, єуєе = +1 и представление D1 должно содержаться в [DJ\DJ]S\ если J — целое число, то 80=+1, єуєе = —1 и D1 должно содержаться в [ojXoj]a.

Менее тривиальным примером является фиктивный угловой момент, введенный в гл. 14, §-2. Здесь опять теорема Вигнера — Эккарта предсказывает, что внутри кубического триплета Г4 или T5 матричные элементы компоненты вектора V определяются с точностью до постоянного множителя, поскольку (табл. 2) векторное представление T4 содержится в прямом произведении Г4 X Г4 или T5 X Гб лишь однажды. Более того, как видно из этой же таблицы, именно антисимметричное произведение [Г4 X IYU или [Г5 X Г5]а содержит представление Г4, так что произведение єуєе должно равняться —1. Таким образом, только 7-нечетные векторы имеют отличные от нуля матричные элементы между состояниями триплета Г4 или Г5. Мы предвосхитили этот,результат, когда ввели фиктивный угловой момент (обязательно Г-нечетный), которому должен быть пропорционален любой вектор, пока мы не выходим за рамки триплетов Г4 или Г5.

§ 10. Парамагнитный ион во внешнем электрическом поле

Потенциальную энергию иона в однородном электрическом поле E можно записать в виде

VE = -(-e)E-Srp = -E-Pe, (15.57)

р

где S Гр 03начает сумму по положениям электронов иона,

а ре = — е 2 Гр представляет собой оператор электрического р

дипольного момента иона.

Изменение энергии, обусловленное возмущением (15.57), можно подразделить на эффекты первого порядка, линейные по Е, и эффекты более высокого порядка, в основном квадратичные по полю, известные как поляризационные эффекты. Квадратичные поляризационные эффекты вызывают изменение энергии, выражаемое обычной формулой теории возмущений второго приближения:

AaITjt-ff (°|Е'Ре;;^Е-р<;|0)- (15.58)

п

В лабораторных условиях обычными методами можно получить электрические поля E величиной максимум порядка нескольких тысяч вольт на миллиметр, и соответствующие матричные элементы ^0|ре-Е|я), выраженные ъ воднрвых числах, 92

часть iii. теоретический обзор

оказываются порядка 1 см-1, т. е. намного меньше энергетических интервалов Wn — W0. В первом приближении по возмущению (15.57)

Ь№в = -Е-(рв)9 (15.59)

где среднее значение (ре) вычисляется по основному состоянию или в более общем случае с помощью функций, относящихся к основному уровню, если этот уровень вырожден. Поправка первого приближения (15.59), таким образом, намного превышает величину A2We, вычисляемую по формуле (15.58), если только она не обращается в нуль в соответствии с правилами отбора. Именно эти правила отбора мы и собираемся исследовать с помощью нескольких характерных примеров.

Если окружение и, следовательно, также гамильтониан парамагнитного иона инвариантны относительно инверсии, то основной мультиплет иона обладает определенной четностью, положительной или отрицательной, и в обоих случаях (ре) обращается в нуль, поскольку ре является полярным (т. е. пространственно нечетным) вектором, Преобразующимся В вектор —ре при инверсии. С другой стороны, если гамильтониан иона не инвариантен относительно инверсии, ТО (ре) может отличаться от нуля.

Если в качестве исходного пункта в нашем описании иона служит свободный ион, находящийся в кристаллическом поле с потенциалом V(г), то отсутствие центра симметрии окружения влечет за собой наличие в V (г) части кнечет, меняющей свои знак при инверсии. Тогда поправка к энергии, линейная по полю Е, появляется во втором приближении в виде перекрестного члена, содержащего —(р-Е) и 1/нечет. Используя обозначение комил. сопр. для комплексно сопряженной величины, получаем
Предыдущая << 1 .. 26 27 28 29 30 31 < 32 > 33 34 35 36 37 38 .. 123 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама