Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Электрохимия -> Абрагам А. -> "Электронный парамагнитный резонанс переходных ионов Том 2" -> 39

Электронный парамагнитный резонанс переходных ионов Том 2 - Абрагам А.

Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов Том 2 — М.: Мир, 1973. — 350 c.
Скачать (прямая ссылка): elektronnieparametri1973.djvu
Предыдущая << 1 .. 33 34 35 36 37 38 < 39 > 40 41 42 43 44 45 .. 123 >> Следующая


</IlPIIO (<2, 2 IOS(I) |2, 2) + (2, 1 IOS(I) 12,1) + (2,0 \O04(I) |2, 0)}=

= (L||?||L)(3, 3 |OS(L)| 3, 3),

и поэтому, пользуясь табл. 17 и 18, получаем для рассматриваемого иона

(L II ? II L) = -g- (/ II ? ||/) = "зу^ •

Численные значения коэффициентов (L||a||L) и (L||?||L) для основных состояний ионов группы железа, а также общие формулы для них приведены в табл. 19.

Переходим теперь к ионам редкоземельной группы, различные термы которых вместе со значениями констант ,a, ?, Y приведены в табл. 20. Вычисление этих констант является более сложной задачей, чем для группы железа, так как мы не только связываем моменты 1 и s отдельных электронов в общие моменты L и S, но и складываем затем LhSb полный момент J. ГЛ. 16. ЭЛЕМЕНТАРНАЯ ТЕОРИЯ КРИСТАЛЛИЧЕСКОГО ПОЛЯ 109

Проблема, однако, значительно упрощается для второй половины группы редкоземельных элементов, где основной мульти-плет обладает не только максимальными значениями 5 и L, но и максимальным значением / = L + 5. Поэтому состояние с Jz = J описывается одним слэтеровским детерминантом, и мы можем воспользоваться тем же методом, что и в случае группы железа: сначала мы вычисляем а, ? и у для отдельного электрона так же, как и раньше (результаты выписаны в табл. 18), и получаем, например, что

(/IlallO = -A-

Рассмотрим затем, скажем, ион Tm3+(4/12, 3H6). Состояние с / = 6, Jz = 6, или 16, 6), является также состоянием с L = = Lz = 5, 5 = S2 = 1 и поэтому описывается одним слэтеровским детерминантом для дырок (3+, 2+). Следовательно,

(/Il a ||/)(4/12, 3H6)(6, 6 IO20 (J) |6, 6) =

= -(/11 a II /) (4f2, 3H6) (6, 6 I Ol (J) 16, 6) =

= - (/Il a ||/){(3, 3 IO20 (1)1 3, 3) + (3, 2 102(1)1 3, 2)}, (16.26)

и, пользуясь табл. 17, получаем для мультиплета (4/12, zH6)

</Il a Il/)=-55-.

С первой половиной оболочки дело обстоит сложнее, поскольку для основного мультиплета (/, L, 5) величина / равна не L + S9 а JL — S|, и ни одно из состояний этого мультиплета не выражается с помощью только одного слэтеровского детерминанта. Однако можно разложить любое состояние этого мультиплета по собственным состояниям |L, Ml) и |5, Ms), используя коэффициенты Клебша — Гордана:

I L, S, /, Mj)= 2 (L, ML-, S, Ms |L, 5; /, Mj) | L9 ML) | 5, Ms).

ML+Ms~Mj

(16.27)

Допустим, что мы вычисляем константу (/ || a Il /). Найдем сначала среднее значение величины 2 РІ{ті) в состоянии (16.27).

В состоянии |L, S9 J9 Mj) оно равно

(/IIа||/)(/, Mj |02(J)I /, Mj)9

а в состоянии |L, Mjl) |S, Ms)

(LIIaIIL) (L9 Ml IO2 (L)| L9 Ml). 109 ЧАСТЬ III. ТЕОРЕТИЧЕСКИЙ ОБЗОР

Тогда из равенства (16.27) вытекает, что

(/ Il а Il /) (/, Mj \ О2 (J) I /, M1) =

= OJaIIL) 2 I {L, Ml; S, Ms \L, S; J, Mj) PX

Ml+Ms=Mj

XiLt ML\ Ol(L)|L, ML\ (16.28)

где коэффициент (L II a II L) можно вычислить так же, как и в случае группы железа.

В действительности, как мы говорили в гл. 13, § 5 при сложении угловых моментов, метод эквивалентных операторов является перефразировкой фундаментальной формулы (13.38), которая выражает теорему Вигнера — Эккарта, а табл. 17 матричных элементов операторов Oqk — не что иное, как таблицы коэффициентов Клебша — Гордана с точностью до нормировочных констант. Табулированные нами величины (/||a||/), (/||?||/), (/ Il у Il «О пропорциональна диагональным значениям приведенных матричных элементов в формуле (13.38),

-J7J=(ZliniU).

Аналогичным образом (L || a |] L), (L || ? || L), (L || y II L) пропорциональны приведенным матричным элементам (l/j/^L+l) (L Il TftIiL), и можно получить в окончательном виде соотношение между ними с помощью 6/-символов Рака.

В самом деле, переход от величин (L || Tk || L) к (/ || Tk || /) включает в себя две схемы векторного сложения: с одной стороны,

L + S = J, J+k = J,

а с другой,

L + k = L, L + S = J,

что в соответствии со свойствами 6/-СИМВОЛОВ, описанными в гл. 13, § 5, приводит к формуле

(Л|Г,||/) = (-1)^+5+/+/г(2/ + 1)([ * 1^(SLWTkWSL). (16.29)

Это позволяет нам переписать формулу (16.28) в окончательном виде

(/IIa, ?, Y ll/) = (L, 5IIa, ?, Y||L,S)(-l)L+5+/+*X

W /Oj I ni/(2L+ *+!)! (2Z-ffT// k J\ ГЛ. 16. ЭЛЕМЕНТАРНАЯ ТЕОРИЯ КРИСТАЛЛИЧЕСКОГО ПОЛЯ 110

§ 3. Недиагональные матричные элементы кристаллического поля

В приближении промежуточного кристаллического поля предполагается, что величина его мала по сравнению с интервалом между двумя термами (L, S) и (Lf, 5), между которыми поле имеет матричные элементы. Для случая группы железа было проведено несколько вычислений с учетом недиагональных вкладов кристаллического поля. Более важной является обусловленная кристаллическим полем связь между двумя мультиплетами (L, S9 /) и (L, S9 /') в группе редкоземельных элементов. Метод эквивалентных операторов в этом случае становится неадекватным, и приходится возвращаться к формуле Вигнера — Эккарта (13.38). Одно из преимуществ этого более общего подхода заключается в том, что вычисление приведенного недиагонального матричного элемента (JWTkWJf)9 если известна величина (L9S\\Tk\\L,S) или (L9SWTkWLf9S)9 не сложнее, чем вычисление диагональных элементов (/||7\||/), пропорциональных (/||а, ?, Yll/).
Предыдущая << 1 .. 33 34 35 36 37 38 < 39 > 40 41 42 43 44 45 .. 123 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама