Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Электрохимия -> Абрагам А. -> "Электронный парамагнитный резонанс переходных ионов Том 2" -> 6

Электронный парамагнитный резонанс переходных ионов Том 2 - Абрагам А.

Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов Том 2 — М.: Мир, 1973. — 350 c.
Скачать (прямая ссылка): elektronnieparametri1973.djvu
Предыдущая << 1 .. 2 3 4 5 < 6 > 7 8 9 10 11 12 .. 123 >> Следующая


а) Одноэлектронные операторы

Если xF и xF' различаются более чем одним одноэлектронным состоянием, то (xFlzlIxFyr)=O. Если они различаются одним-единственным индивидуальным состоянием, которым для xF яв- гл. 11. энергия электронов в магнитном поле

19

ляется ф, а для xF' — ф', то

OFI Л|Ч")=±(ф|а|ф'). (11.26)

Знак в (11.26) есть знак перестановки, которую нужно произвести между состояниями V, чтобы функция ф' оказалась на месте, соответствующем ф в xF; при этом все другие одинаковые индивидуальные состояния должны быть расположены в одном и том же порядке как в xF так и в 1F'. Например,

(2+, Г, 0+| А |2+, O+, -2-) = -(2+, Г, 0+|Л|2+, -2-, O+) =

= — (l~~| а I —2~).

б) Двухэлектронные операторы

Если T и F различаются более чем двумя индивидуальными состояниями, то (xFlzlIxF')= 0.

Если xF и xF' различаются двумя индивидуальными состояниями ф и % для xF и ф', %' для xF', то

(xFI A IxF7)= ± {(ф(0%(2) |а(1, 2) !?'(1)%' (2)) -

-(Ф(1)х(2)|а(1, 2)|х'(1)ф'(2))}. (11.27)

Выбор знака определяется знаком перестановки состояний в xF', в результате которой ф' оказывается перед ф, а %' — перед %.

Если xF и xF' различаются одним-единственным состоянием, ф и ф', то

(WUIxFO= ±ф 2 Ф,{(ф(1)ф/ (2) |а(1, 2) |ф-(1) ф,(2)) —

-(ф(1)ф*(2)И1, 2)|ф*(1)ф'(2))}. (11.28)

Знак определяется так же, как и прежде.

Простота формул (11.24) — (11.28) полностью обусловлена предположением о том, что одноэлектронные волновые функции фі взаимно ортогональны. Это всегда выполняется, если используются одноэлектронные волновые функции Хартри — Фока для одиночного атома. С другой стороны, если считать, что магнитные электроны принадлежат нескольким атомам (с чем мы встретимся при рассмотрении эффектов ковалентной связи), то одноэлектронные орбитали, относящиеся к различным атомам, больше не ортогональны друг другу и вычисление матричных элементов энергии становится гораздо более сложным.

§ 7. Введение кристаллического поля

^Начиная с 1929 г. ряд авторов отмечает, что на парамагнитные свойства иона должны в очень большой степени влиять его электростатические взаимодействия с окружающей средой. Эти 20

часть iii. теоретический обзор

взаимодействия, по крайней мере в первом приближении, могут быть описаны введением потенциала электростатического поля, действующего на электроны парамагнитного иона со стороны соседних атомов или ионов. Ван Флек [6] и Бете [7] заложили основы количественного описания этих взаимодействий, развивая теорию, которая сейчас известна как теория кристаллического поля. Эта теория имеет первостепенное значение для нашего понимания магнетизма в целом и результатов экспериментов по парамагнитному резонансу в частности. Первый успех теории кристаллического поля связан с объяснением эффекта «замораживания» орбитального момента для ионов элементов группы железа. Было обнаружено, что экспериментальные значения восприимчивостей довольно большого числа солей элементов группы железа находятся в хорошем согласии с результатами расчета этих величин по формулам, в которых орбитальный вклад в магнитный момент должен быть положен равным нулю, т. е. если xF есть волновая функция иона, то необходимо предположить, что

(У I Lx IV) = (Lx) = 0 = (Ly) = (L2). (11.29)

Ван Флек показал, что достаточным услобием для замораживания орбитального момента является отсутствие орбитального вырождения; его доказательство состоит в следующем. Пусть xF является собственной функцией системы, состояние которой предполагается невырожденным. Если можно пренебречь зависящими от спина взаимодействиями, то гамильтониан Ж, представляющий собой сумму кинетической и потенциальной энергий электронов, является действительным оператором. Тогда можно предположить, что функция xF вещественна, поскольку если бы она была комплексной и имела вид xFi + /xF2, то при действительном Ж функции xFі и xF2 были бы по отдельности собственными функциями Ж с одной и той же энергией, и уровень был бы вырожден в противоречии с начальным предположением. Однако оператор углового момента, соответствующий величине (11.3), имеет вид

L=I (Г XV), (11.30)

т. е. является чисто мнимым, так что ожидаемое значение любой из его компонент, вычисленное с помощью действительной волновой функции, является мнимым. С другой стороны, поскольку оператор L эрмитов, его ожидаемые значения должны быть вещественными. Следовательно, в рассматриваемом случае они должны обращаться в нуль.

В гл. 15, § 4 мы приведем более общее доказательство предыдущего утверждения. Отметим здесь, что замораживание ор- гл. 11. энергия электронов в магнитном поле

21

битального момента является важным примером влияния окружающей среды на магнитные свойства иона, а также тесной связи между магнетизмом и вырождением уровней энергии. Симметрия относительно вращений, свойственная свободному иону, соответствует вырождению уровней энергии, которое в кристалле с окружением более низкой симметрии может быть частично или даже полностью снято, что приводит к изменению магнитных свойств иона.
Предыдущая << 1 .. 2 3 4 5 < 6 > 7 8 9 10 11 12 .. 123 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама