Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Органическая химия -> Брацыхин Е.А. -> "Технология пластических масс" -> 24

Технология пластических масс - Брацыхин Е.А.

Брацыхин Е.А., Шульгина Э.С. Технология пластических масс — Л.: Химия, 1982. — 328 c.
Скачать (прямая ссылка): tehnologiyaplasticheskihmass1982.djvu
Предыдущая << 1 .. 18 19 20 21 22 23 < 24 > 25 26 27 28 29 30 .. 133 >> Следующая


Молекулы эмульгаторов обладают сродством и к мономеру, и к воде. Адсорбируясь на поверхности раздела капля мономера — вода, они, во-первых, снижают поверхностное натяжение и, во-вторых, образуют прочный защитный слой, который препятствует слиянию (коалесценции) капель мономера (рис. III. 1). При высоких концентрациях эмульгатора в реакционной среде образуются

58 Рис. III.1. Схема эмульсионной иолнмериаации:

1 —дисперсная частица мономера с защитной оболочкой из эмульгатора (палочка с кружками— эмульгатор; кружки —его полярные группы, обращенные к воде; заштрихованный участок—растворенные молекулы мономера); 2— начало полимеризации (точки —малые частицы полимера); 3—весь мономер превращен в полимер.

мицеллы эмульгатора. Мономер частично растворяется в мицеллах, а частично остается в системе в виде крупных капель, стабилизированных эмульгатором. Число мицелл в системе примерно в IO8 раз больше числа капель мономера. Полимеризацию обычно инициируют водорастворимыми низкотемпературными окислительно-восстановительными инициаторами. Полимеризация начинается в мицеллах размером 10 мкм, которые вскоре превращаются в частицы полимера, окруженные слоем эмульгатора, размером 0,1 мкм, т. е. в латексные частицы. На начальных стадиях процесса происходит рост числа и размеров латексных частиц, а далее, после исчерпания мицеллярного эмульгатора, увеличивается лишь размер латексных частиц за счет диффузии мономера из капель. Полимеризация завершается после израсходования капель мономера.

Эмульсионная полимеризация обладает достоинствами полимеризации в массе и растворе: протекает с большими скоростями и выходами полимера при высоких значениях его молекулярной массы. Вместе с тем, наличие большого количества воды и интенсивное перемешивание обеспечивают хороший теплоотвод на протяжении всего процесса полимеризации. Это определяет техническую ценность и преимущество эмульсионной полимеризации перед полимеризацией в массе и растворе, где в конце реакции всегда возникает трудность с перемешиванием среды и с отводом теплоты из-за высокой вязкости среды.

Полимеры, получаемые эмульсионной полимеризацией, применяют либо непосредственно в виде латексов, либо в виде порошка, выделяемого из латексов коагуляцией электролитами — солями или кислотами. Эмульсионной полимеризацией получают поливинилацетат, полнвинилхлорид, полиакрнлаты, полиметакри-латы и т. д.

Недостаток латексной полимеризации заключается в том, что полимер всегда загрязнен остатками эмульгатора. Поскольку эмульгатор является электролитом, то присутствие его в полимере ухудшает диэлектрические свойства полимера.

59 Полимеризация в суспензии — по технологическому оформлению аналогична эмульсионной полимеризации, но в отличие от последней, образование полимера происходит не в мицеллах, а в каплях чистого мономера. Суспензионную полимеризацию проводят путем интенсивного перемешивания мономера с водой, при этом получается дисперсия, диаметр капель мономера которой составляет 10—500 мкм. Во избежание слияния капель добавляют водорастворимые стабилизаторы дисперсии: поливиниловый спирт, ¦сополимеры окисей этилена и пропилена. Количество стабилизатора, его природа и скорость перемешивания определяют такой размер капель мономера, что каждую каплю можно рассматривать как микроблок, в котором идет полимеризация.

При суспензионной полимеризации применяют инициаторы, растворимые в среде мономера. Образующийся полимер представ-, ляет собой шарообразные частицы (гранулы, бисер), которые легко оседают при прекращении перемешивания без введения коагулянтов. Суспензионную полимеризацию называют еще бисерной или гранульной.

В отличие от полимеров, синтезированных в эмульсии, полимеры, полученные в суспензии, свободны от стабилизаторов, благодаря чему они имеют высокие диэлектрические свойства, а изделия из них высокопрозрачны. Полимеризацию в суспензии применяют для синтеза поливинилхлорида, полистирола, полиметилмет-акрилата, поливинилацетата.

ПОЛИКОНДЕНСАЦИЯ

Поликонденсация наряду с полимеризацией является одним из основных методов получения полимеров. Поликонденсацией называется ступенчатый процесс образования полимеров из двух- или полифункциональных соединений, сопровождающийся в большинстве случаев выделением низкомолекулярного вещества (воды, спиртов, галогенводородов и др.). Необходимым условием поликонденсации является участие в реакции молекул, каждая из которых содержит две или более функциональные группы, способные взаимодействовать между собой. В общем виде процесс поликои-денсации может быть представлен следующим образом:

аАа + ЬВЬ —>• аАВЬ + ab aABb + аАа —> aABAa + ab и т. д. аАВАа + ЬВЬ —*¦ aABABb + ab и т. д.

где А и В — остатки реагирующих молекул; а и b — функциональные группы; ab — низкомолекулярный продукт.

Приведенная схема показывает ступенчатость образования полимера при поликонденсации: сначала взаимодействуют между собой молекулы мономеров с образованием димеров, затем димеры превращаются в тримеры, тримеры— в тетрамеры и т. д., т. е. в олигомеры. Благодаря наличию функциональных групп, олигомеры
Предыдущая << 1 .. 18 19 20 21 22 23 < 24 > 25 26 27 28 29 30 .. 133 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама