Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Сидельковская Ф.П. "Химия N-вннилпирролидона и его полимеров" ()

Сеидов Н.М. "Новые синтетические каучуки на основе этилена и олефинов" (Высокомолекулярная химия)

Райт П. "Полиуретановые эластомеры" (Высокомолекулярная химия)

Попова Л.А. "Производство карбамидного утеплителя заливочного типа" (Высокомолекулярная химия)

Поляков А.В "Полиэтилен высокого давления. Научно-технические основы промышленного синтеза" (Высокомолекулярная химия)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Другое -> Лакович Дж. -> "Основы флуоресцентной спектроскопии" -> 5

Основы флуоресцентной спектроскопии - Лакович Дж.

Лакович Дж. Основы флуоресцентной спектроскопии — М.: Мир, 1986. — 496 c.
Скачать (прямая ссылка): osnovifluriscentnoyspektroskopii1986.djv
Предыдущая << 1 .. 2 3 4 < 5 > 6 7 8 9 10 11 .. 185 >> Следующая

R = e-AE/kT (1.1)
где k - константа Больцмана; Т - абсолютная температура, К. При комнатной температуре 300 К отношение R paBHo-^0,01. Следовательно, большинство молекул будет находиться в самом нижнем колебательном состоянии; именно такие молекулы и поглощают свет. Иэ-за большой разноо-ти энергий между уровнями Sq и Stl по существу, ни у каких флуорофоров состояние Sy не может быть заселено термическим путем. Интересно отметить, что даже малое термически активированное заселение первого возбужденного колебательного состояния молекул можно зарегистрировать* используя различие спектров поглощения при разных температурах.
За поглощением света обычно следует несколько других процессов. Возбуждение флуорофора, как правило, происходит до некоторого высшего колебательного уровня состояний (St либо52).За некоторыми редкими исключениями, для молекул в конденсированной фазе характерна быстрая релаксация на самый нижний колебательный уровень состояния Sx. Этот процесс называется внутренней конверсией и происходит большей частью за 10-12 с. Поскольку типичные времена затухания флуоресценции близки к 10-8 с, внутренняя конверсия обычно полностью заканчивается до процесса испускания. Следовательно, испускание флуоресценции чаще всего осуществляется из термически равновесного возбужденного состояния. Аналогично поглощению обратный переход электронов на самый нижний электронный уровень также приводит к колебательно возбужденному состоянию (рис. 1.3). Термическое равновесие достигается за время порядка 10 с. Интересным следствием из такого рассмотрения является то, .что спектр поглощения молекулы отражает колебательную структуру возбужденных электронных состояний, а спектр испускания - колебательную структуру основного электронного состояния. В большинстве случаев электронное возбуждение не сильно изменяет расположение колебательных уровней энергии. В результате этого колебательные структуры, проявляющиеся в спектрах поглощения и испускания, сходны.
Молекулы в состоянии S1 могут также подвергаться конверсии в первое триплетное состояние 7\. Испускание из Ти называемое фосфоресцен-
цией, обычно сдвинуто в сторону больших длин волн (меньших энергий) по сравнению с флуоресценцией. Конверсия из St в Тх называется интер-комбинационной конверсией. Переход из Тх в основное состояние запрещен, в результате чего константа скорости такого испускания на несколько порядков меньше соответствующей константы для флуоресценции. На испускание флуоресценции могут влиять и другие факторы, не показанные в явном виде на рис. 1.3: влияние растворителей, релаксация растворителя, тушение, а также реакции, происходящие в возбужденных состояниях. Все они будут рассмотрены детально в последующих разделах книги.
1.2. Характеристики испускания флуоресценции
Для явления флуоресценции известно несколько основных характеристик. Существуют и исключения, но они редки. Если какая-либо из нижеперечисленных характеристик отсутствует у данного флуорофора, можно сделать вывод о некоторых особых свойствах этого соединения.
1.2.1. Стоксов сдвиг
Как правило, всегда наблюдается сдвиг испускания относительно поглощения в сторону больших длин волн, т.'е. потеря энергии (исключеиие -атомы в газовой фазе). Это явление впервые наблюдал Стокс в 1852 г. в Кембридже [ 4], используя при этом аппаратуру, принцип действия которой изображен на рис. 1.4. Источником ультрафиолетового возбуждения служил солнечный свет, пропущенный через пластинку из голубого стекла. Перед приемником в качестве желтого фильтра стоял стакан с вином. Флуоресценция хинина лежит в области 450 нм и поэтому хорошо заметна невооруженным глазом. В настоящее время для определения величины стоксова сдвига используют другие методы.
Потери энергии между возб/ждением и испусканием неизменно наблюдаются для флуоресцирующих молекул в растворах. Одной из основных причин возникновения стоксова сдвига является быстрая релаксация на нижний колебательный уровень состояния Sj. К тому же обычно происходит
Солнце
О
Фильтр Возбуждение из голубого стенла (~т нм)
¦_—ч Фильтр испускания Гг?"] (желтый-стакан \"а о ВиномI
с Вином}
Наблюдатель
РИС. 1.4. Схема первой установки для обнаружения стоксова сдвига.
переход на возбужденные колебательные уровни состо5Шия S0 (см. рис. 1.3), что приводит к дополнительной потере колебательной энергии. Вдобавок к этому стоксов сдвиг может быть еще более увеличен благодаря влияниям растворителя на флуорофоры и реакциям в возбужденных состояниях. В газовой фазе у атомов и молекул не всегда имеется стоксов сдвиг.
И спускание без сдвига наблюдают тогда, когда концентрации газа достаточно малы для того, чтобы возбужденные молекулы не претерпевали столкновений с другими молекулами до процесса испускания. Такие столкновения приводят к релаксации. В жидкой фазе процессы соударения происходят непрерывно.
1.2„2„ Независимость спектра испускания от длины волны возбуждения
Предыдущая << 1 .. 2 3 4 < 5 > 6 7 8 9 10 11 .. 185 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама