Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Промышленные производства -> Баскаков А.П. -> "Расчеты аппаратов кипящего слоя" -> 152

Расчеты аппаратов кипящего слоя - Баскаков А.П.

Баскаков А.П., Лучевский Б.П., Мухленов И.П., Ойгенблик А.А. Расчеты аппаратов кипящего слоя — Л.: Химия , 1986. — 352 c.
Скачать (прямая ссылка): raschetiapparatovkipyashegosloya1986.djvu
Предыдущая << 1 .. 146 147 148 149 150 151 < 152 > 153 154 155 156 157 158 .. 178 >> Следующая

материального баланса, записываемого с учетом поведения дисперсной фазы и
характера движения газа в пределах кипящего слоя (слоев). Наиболее
простыми являются предположения о полном перемешивании зерен адсорбента и
режиме идеального вытеснения по газовой фазе.
Наиболее развит макрокинетический метод расчета применительно к
частному случаю кинетики послойной отработки зерен адсорбента правильной
геометрической формы.
Для сферических зерен связь между временем от начала адсорбции и
относительной глубиной отработки определяется уравнением (5.133) - см.
также [41]. Плотность распределения зерен адсорбента по времени
пребывания при полном перемешивании в КС выражается функциональной
зависимостью
р (т. т) = (1/т) ехр (-т/т) (5.148)
где т = v/VT - среднее расходное время пребывания адсорбента в КС; VT -
объемный расход адсорбента.
Режим полного вытеснения по газу соответствует экспоненциальному
профилю концентрации адсорбтива по высоте слоя, усреднение которого дает
среднее значение концентрации в газе:
С=(С0-Ск)/1п(С0/Ск) (5.149)
302
рис. 5.32. Значения определенных интегралов I (Л) и /ц (А) в
зависимости от параметра А:
1 - сферический адсорбент; 2 -цилиндрический адсорбент.
Совместное решение уравнений (5.140), (5.133), (5.148), (5.149)
приводит [44] к соотношению для распределения адсорбента по'
относительной глубине отработки зерен
Р (у) = Л(у~ у2) ехр [-А {у2/2
*73)1
(5.150)
и для среднего значения степени отработки адсорбента на выходе из слоя
5,-
(1 - у)3] (у - у2) X
X бхр[ -А (у2/2 - у3/3)] dy -J- ехр (-Л/6) = AI (Л) + ехр (-Л/6)
(5.151)
(параметр А = a*R2/ [Олт:(Со - Ск)/1п(Со/Ск)]). Доля полностью
отработаного адсорбента на выходе из КС:
* = ехр(-Л/6) (5.152)
Значения определенного интеграла в (5.151)' представлены на рис. 5.32.
При проектных расчетах обычно задаются: расход газа-носителя Ус,
размер зерен адсорбента R, начальная С0 и конечная Ск концентрации
адсорбента в газовом потоке. Концентрация насыщения адсорбента а* и
коэффициент диффузии ?)# адсорбтива в насыщенном слое внутри зерна также
должны быть известны. В процессе расчета определяются необходимый объем v
адсорбента в слое.
При анализе работы противоточных многосекционных аппаратов КС
существенно, что во второй и в последующие слои непрерывно поступает
адсорбент, имеющий неравномерную степень отработки отдельных частиц в
предыдущем слое. Так, во второй по ходу дисперсной фазы кипящий слой
адсорбент входит с распределением по глубине отработки зерен,
соответствующей соотношениям (5.150), (5.152). Перемешивание частиц во
втором слое приводит к тому, что каждая порция поступающего адсорбента
также "распределяется" по времени пребывания и, соответственно, по
степени дополнительной отработки во втором слое и на выходе из него
согласно соотношениям (5.148), (5.150) и (5.152). Анализ этого
обстоятельства приводит [48] к следующим формулам для распределения
адсорбента по глубине отработки отдельных его

порций на выходе из второго кипящего слоя

(5.153)
и для доли полностью отработанного адсорбента
= At - Л2 *ехр ехр
где А\ имеет структуру параметра А, в котором вместо С0 используется
значение концентрации адсорбтива Сi на входе в первый слой по ходу
адсорбента; А2 = a*R2\n(C2/C\)/[D*x2(C2- Cj)] (С2 - концентрация
адсорбтива в газе на входе во второй слой, f2 - среднее расходное время
пребывания адсорбента во втором КС).
Значения концентраций С\ и С2 вычисляются из совместного решения
уравнений материального баланса и кинетики поглощения адсорбтива зернами
адсорбента:
Правая часть кинетического уравнения (5.155) соответствует средней
степени отработки адсорбента во втором слое х\2, получаемой
интегрированием распределения (5.153) с весовым множителем г] = [ 1-(1-
у)2] и с дополнительным учетом полностью отработанной доли адсорбента
Х\Х2 на выходе из второго слоя. 1(А2) - значение определенного интеграла
из соотношения (5.151), соответствующее величине параметра А2.
При расчете по уравнениям (5.155) расход адсорбента выбирается из
соображений, изложенных выше относительно величины Мт.тш, и порозность
кипящих слоев, необходимая для нахождения численных значений параметров
А\ и Л2, зависящих от Х\ и т2, должна быть предварительно задана из
соображений удовлетворительного псевдоожижения слоя адсорбента при
скоростях газа, незначительно превышающих критическую скорость начала
псев-доожжиения. Для процессов адсорбции обычно принимается е = = 0,45 ^
0,55.
Трансцендентные уравнения (5.155) решаются любым итерационным методом.
Предыдущая << 1 .. 146 147 148 149 150 151 < 152 > 153 154 155 156 157 158 .. 178 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама