Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Синтез органики -> Браун Д. -> "Практическое руководство по синтезу и исследованию свойств" -> 41

Практическое руководство по синтезу и исследованию свойств - Браун Д.

Браун Д., Шердрон Г., Керн В. Практическое руководство по синтезу и исследованию свойств — М.: Химия, 1976. — 256 c.
Скачать (прямая ссылка): prakticheskoerukovodstvoposintezu1976.djvu
Предыдущая << 1 .. 35 36 37 38 39 40 < 41 > 42 43 44 45 46 47 .. 124 >> Следующая


Определение ударной вязкости и ударной вязкости с надрезом в основном проводится двумя методами, которые различаются между собой только способами крепления образца. При испытании на ударную вязкость при одновременном изгибе по Шарпи образец кладут горизонтально на две опоры и ударяют маятниковым копром посредине, в то время как по Изоду образец с закрепленным нижним концом расположен вертикально, а по свободному верхнему концу ударяют маятниковым копром.

2.3.12.4. Определение твердости

Твердость — способность твердого тела противодействовать внедрению в него другого тела. Для оценки твердости измеряют силу, необходимую для достижения определенной глубины внедрения. Эта сила, или глубина внедрения, зависит от температуры и продолжительности измерения, а также от некоторых других факторов, например от формы внедряемого тела. В настоящее время не существует единого метода измерения твердости полимерных материалов. Кроме того, существующие методы применимы не для всех полимеров*. Имеются две группы методов изучения твердости: измерение глубины внедрения по остаточной деформации без нагрузки (метод Бринелля) и измерение глубины внедрения при полной нагрузке**. Последний метод применяют для термопластов и реак-топластов. Довольно часто используют следующий метод: стальной шарик диаметром 5 мм вдавливают в образец в виде пластинки

* Твердость полимера можно определить также по модулю упругости: высокий модуль упругости соответствует большей твердости. Преимущество такого метода заключается в том, что значения модуля упругости можно получить одним и тем же методом: либо исследованием зависимости напряжение — удлинение, либо изучением торсионных колебаний.

** Оценка твердости полимеров существенно зависит от используемого метода. Например, при определении твердости упругого материала (резины) по методу Бринелля получается, что резина очень твердая (здесь измеряется только остаточная деформация), в то время как при определении по методу вдавливания шарика она оказывается мягкой, так как здесь одновременно учитывается и остаточная, и упругая деформации.

103 ТОЛЩИНОЙ 4 MM с постоянной силой и через 10 и 60 с измеряют глубину внедрения. Следует отметить, что полученные различными методами значения твердости нельзя пересчитывать друг в друга.

2.4. ПЕРЕРАБОТКА ПОЛИМЕРОВ

Для ряда физических и химических исследований необходима предварительная обработка полимеров. Для получения пленок, нитей и других образцов для лабораторных испытаний методы, применяемые в технике (литье под давлением, экструзия, каландрова-ние), малодоступны. В лаборатории обычно используют методы, описанные ниже.

2.4.1. Измельчение полимеров

Если в процессе синтеза, а также последующих операций осаждения и сушки полимер получается недостаточно измельченным, то его подвергают измельчению. Вследствие большой вязкости растирание в ступке обычным способом редко приводит к желаемому результату. Часто при измельчении образец сильно охлаждают, например жидким азотом, что увеличивает хрупкость. При растирании полимера могут возникать электростатические заряды, которые устраняют путем увлажнения образца небольшим количеством эфира. Измельчение можно также проводить в мельницах, при этом легкоплавящиеся полимеры начинают течь вследствие выделения тепла. Для предотвращения этого добавляют небольшие количества сухого льда. Существуют также специальные мельницы с охлаждением, которые очень удобны.

2.4.2. Переработка полимерных расплавов

При переработке полимерных расплавов предполагается, что при высокой температуре переработки не происходит их заметного разложения. Полимеры, растворы которых трудно перерабатывать из-за высокой вязкости или вследствие разложения при температуре плавления, можно перевести в вязкотекучее состояние пластификацией и перерабатывать при более низкой температуре. В качестве пластификаторов применяют высококипящие жидкости, совмещающиеся с полимерами, например эфиры фосфорной и фталевой кислот (диоктилфталат), различные алифатические дикарбоновые кислоты. Молекулы пластификатора располагаются между полимерами цепочками, что приводит к уменьшению межмолекулярного взаимодействия (внешняя пластификация)*. При этом подвижность полимерных цепочек возрастает, а температура стеклования понижается. Пластифицированные полимеры являются более гибкими и обладают меньшей твердостью по сравнению с непластифи-цированными (см. опыт 3-48).

* Внутренняя пластификация описана в разделе 3.3.1.

104 2.4.2.1. Получение изделий прессованием

Для ряда физических исследований (микроскопия, ИК-спектроско-пия, механические измерения) необходимы тонкие пленки полимеров. Их получают в лаборатории следующим образом: на тонкую (0,1 мм) алюминевую пластинку (15x15 см) насыпают нужное количество порошка полимера, накрывают второй алюминиевой пластинкой и помещают между плитами гидравлического пресса, нагретыми до температуры плавления полимера. Образец прессуют в течение примерно !/г—1 мин, затем алюминиевые пластинки вынимают из пресса и охлаждают водой или двумя холодными металлическими пластинами. Полученную полимерную пленку осторожно отделяют от алюминиевых пластинок. Если нужно получить пленку заданной толщины, то между алюминиевыми пластинками помещают шаблон (фольгу подходящей толщины). Оптимальные условия изготовления пленок (количество полимера, температура, давление и время прессования) подбирают эмпирически для каждого отдельного случая. Если пленка получилась мутной, это означает, что температура прессования, по-видимому, была слишком низкой; если она слишком тонка или содержит пузырьки газа (разложение), то температура прессования была слишком высокой. На свойства пленки может влиять и скорость охлаждения. Иногда алюминиевые пластинки с трудом отделяются от полимера. Быстрое охлаждение водой, а также предварительное смазывание пластин силиконовым маслом или водной дисперсией политетрафторэтилена помогает преодолеть эту трудность.
Предыдущая << 1 .. 35 36 37 38 39 40 < 41 > 42 43 44 45 46 47 .. 124 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама