Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Справочники -> Аблесимов Н.Е. -> "Справочно учебное пообие по общей химии" -> 10

Справочно учебное пообие по общей химии - Аблесимов Н.Е.

Аблесимов Н.Е. Справочно учебное пообие по общей химии — ДВГУПС, 2005. — 95 c.
Скачать (прямая ссылка): sinopsishimii2005.doc
Предыдущая << 1 .. 4 5 6 7 8 9 < 10 > 11 12 13 14 15 16 .. 35 >> Следующая

ВНИИТФ-РФЯЦ – http://www.ch70.chel.su/
ВНИИЭФ-РФЯЦ – http://www.vniief.ru/russian/index.html
Фридлендер Г. Ядерная химия и радиохимия / Г. Фридлендер, Дж. Кеннеди, Дж. Миллер – М.: Мир, 1967. – 568 с.
Чоппин Г. Ядерная химия. Основы теории и применения / Г. Чоппин, Я. Ридберг – М.: Энергоатомиздат, 1984. – 304 с.
Ядерная химия / Под ред. В.И. Гольданского, А.К. Лаврухиной – М.: Наука, 1965. – 329 с.
*****

2.16. РАДИАЦИОННАЯ ХИМИЯ изучает химические процессы, возбуждаемые действием ионизирующих излучений. Исследует влияние ионизирующих излучений на свойства различных материалов; разрабатывает способы их защиты от разрушения и использования ионизирующих излучений в химической технологии для радиационно-химического синтеза органических соединений (сшивка полимеров).
Радиационная химия возникла после открытия Х-лучей В. Рентгеном в 1895 году и радиоактивности А. Ньепсом в 1857-61 гг. (переоткрыта А. Беккерелем в 1896 г.), которые первыми наблюдали радиационные эффекты в фотопластинках. В последующие годы исследовались радиолиз воды и водных растворов, что обусловлено интересом к биологическим эффектам радиации. Мощный стимул радиационная химия получила в связи с развитием ядерной энергетики и производством ядерного оружия. Надо было изучить радиационную стойкость ядерного топлива, различных конструкционных материалов, химические превращения теплоносителей и замедлителей в ядерных реакторах, а также вещества на всех этапах ядерного топливного цикла.
Сейчас изучена природа промежуточных активных продуктов радиолиза, измерены тысячи констант скоростей реакций в газовой, жидкой и твердой фазах неорганических и органических соединений, накоплены количественные данные о продуктах радиолиза, закономерностях изменений эксплуатационных свойств материалов.
Последовательность процессов в веществе, развивающихся после поглощения энергии излучений, условно принято делить на физическую, физико-химическую и химическую стадии. Физическая стадия происходит за время 10-16-10-15 с и включает процессы поглощения, перераспределения и рассеяния энергии. В результате ионизации и возбуждения молекул образуются ионы (М+), возбужденные ионы (М+*), электроны, возбужденные состояния молекул (М*), сверхвозбужденные состояния молекул (М**) с энергией, превышающей первый потенциал ионизации молекул, а также плазмоны – коллективное сверхвозбужденное состояние ансамбля молекул. Молекулярная система находится в энергетически неравновесном состоянии с негомогенным распределением активных частиц. Общий радиационный выход первичных заряженных и возбужденных частиц составляет 7-10 частиц/100 эВ.
На физико-химической стадии за время 10-13-10-7 с протекают реакции образовавшихся частиц, процессы передачи энергии и молекулярная система переходит в состояние теплового равновесия. На химической стадии в шпорах, блобах и коротких треках протекают реакции образовавшихся ионов, электронов, свободных радикалов друг с другом и с молекулами среды. В жидкой фазе за время порядка 10-7 с происходит выравнивание концентраций продуктов радиолиза по объему.
Одним из продуктов радиационного воздействия на жидкость является сольватированный электрон – электрон, захваченный средой в результате поляризации окружающих его молекул (гидратированный – в воде). Голубой цвет воды в солнечный день обусловлен именно наличием гидратированных электронов с временем жизни 10-5 с.
Институт физической химии РАН (ИФХ, Москва).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
ИФХ РАН, корпус радиохимии и радиационной химии – http://www.ipc.rssi.ru/index.htm
Милинчук В.К. Радиационная химия // Соросовский образовательный журнал. ? 2000. ? № 4. ? С. 24.
Пикаев А.К. Современная радиационная химия: Основные положения: Экспериментальная техника и методы. М.: Наука, 1985. ? 375 с.
Пикаев А.К. Современная радиационная химия: Радиолиз газов и жидкостей. М.: Наука, 1986. ? 360 с.
Пикаев А.К. Современная радиационная химия: Твердое тело и полимеры: Прикладные аспекты. М.: Наука, 1987. ? 448 с.
Тельдеши Ю., Кенда М. Радиация – угроза и надежда / Ю. Тельдеши, М. Кенда ? М.: Мир, 1979. ? 415 с.
*****
2.17. ПЛАЗМОХИМИЯ изучает химические процессы в низкотемпературной плазме. Низкотемпературной принято считать плазму с температурой 103-105 К и степенью ионизации 10-6-10-1, получаемую в электродуговых, высокочастотных и СВЧ газовых разрядах, в ударных трубах, установках адиабатического сжатия и др. способами. В плазмохимии важно разделение низкотемпературной плазмы на квазиравновесную, которая существует при давлениях порядка атмосферного и выше и характеризуется общей для всех частиц температурой, и неравновесную, которая получается при давлениях менее 30 кПа и в которой температура свободных электронов значительно превышает температуру тяжелых частиц (молекул, ионов). Это разделение связано с тем, что кинетические закономерности квазиравновесных плазмохимических процессов определяются только высокой температурой взаимодействующих частиц, тогда как специфика неравновесных процессов обусловлена главным образом большим вкладом химических реакций, инициируемых «горячими» электронами.
Предыдущая << 1 .. 4 5 6 7 8 9 < 10 > 11 12 13 14 15 16 .. 35 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама