Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Высокомолекулярная химия -> Архипова З.В. -> "Полиэтилен низкого давления: Научно-технические основы промышленного синтеза" -> 41

Полиэтилен низкого давления: Научно-технические основы промышленного синтеза - Архипова З.В.

Архипова З.В., Григорьев В.А., Веселовская Е.В., Андреева И.Н. Семенова А.С., Северова Н.Н., Шагилова А.В. Полиэтилен низкого давления: Научно-технические основы промышленного синтеза. Под редакцией А.В. Полякова — Л.: Химия, 1980. — 240 c.
Скачать (прямая ссылка): pend.djvu
Предыдущая << 1 .. 35 36 37 38 39 40 < 41 > 42 43 44 45 46 47 .. 71 >> Следующая

Выше отмечалось, что для суспензионных процессов достигнутая активность гетерогенных катализаторов позволяет исключить из технологической схемы специальные операции очистки полимера от остатков катализатора: при отпарке растворителя острым паром попутно удаляется и часть остатков катализатора. Однако применение острого пара усложняет схему регенерации растворителя. Очевидно, дальнейшее повышение активности гетерогенных катализаторов позволит еще более упростить общую технологическую схему производства ПЭНД.
Как известно, основным методом регулирования молекулярной массы полимера является введение в реакционный объем водорода. Влияние водорода на скорость полимеризации этилена зависит от состава катализатора, а в случае нанесенных катализаторов — от носителя. Так, изменение концентрации водорода в пределах от 10 до 40—50% (об.) почти не сказывается на скорости реакции полимеризации этилена при использовании гомогенных ванадиевых катализаторов и катализатора ТМК. Иная картина наблюдается при использовании в качестве носителя хлорида магния: скорость реакции полимеризации этилена резко снижается по мере увеличения концентрации водорода. Подбирая соответствующие носители, можно получать широкий ассортимент продукции при близкой производительности реакторного узла.
При использовании высокоактивных катализаторов, как гомогенных, так и гетерогенных, скорость реакции полимеризации этилена повышается пропорционально Давлению этилена. Поэтому, чтобы возможности
139
катализаторов реализовались в полной мере, целесообразно процессы производства ПЭ переводить в область более высоких давлений.
Даже самая краткая сравнительная оценка каталитических систем показывает, что достигнутые результаты являются только началом эффективного использования металлорганических комплексных катализаторов. Новый этап в развитии технологии производства ПЭНД требует дальнейших поисков оптимального состава каталитических систем применительно к новым и усовершенствованным технологическим процессам, которые получили уже промышленное освоение или разрабатываются в настоящее время. Необходимо работать и над оптимизацией условий использования имеющихся и создаваемых катализаторов.
Работа по совершенствованию катализаторов и технологических процессов требует в настоящее время нового методологического подхода. Если на первых этапах изучения полимеризации этилена и других а-олефинов при выборе компонентов каталитической системы превалировали эмпирический подход и интуиция исследователя, то теперь уже имеется значительный фундамент для научно обоснованного выбора направлений дальнейшего повышения активности катализаторов и соответственно усовершенствования технологии производства ПЭНД. В этой большой работе кроме специализированных лабораторий должны активно участвовать коллективы действующих производств ПЭНД.
ГЛАВА 5
МЕХАНИЗМ
И КИНЕТИКА
ПРОЦЕССА
КАТАЛИТИЧЕСКОЙ
ПОЛИМЕРИЗАЦИИ
ОЛЕФИНОВ
5.1. Определение путей повышения МЕХАНИЗМ эффективности катализаторов, ДЕЙСТВИЯ разработка высокоактивных КАТАЛИЗАТОРОВ гетерогенных и гомогенных каталитических систем стали возможными благодаря обширным и весьма результативным теоретическим исследованиям, выполненным Натта, Косей, Оливе, Чирковым и их сотрудниками, а также рядом' других авторов. '[
Эти исследования позволили объяснить многие отличительные особенности полимериза-ционных процессов, протекаю-щих с использованием металл-органических комплексных катализаторов, и выдвинуть ряд гипотез о механизме действия новых катализаторов. Значительная часть этих гипотез получила в дальнейшем экспериментальное подтверждение. Интенсивные исследования механизма действия комплексных металлорганических катализаторов продолжаются. Их результаты служат основой
141
разработки новых высокоэффективных каталитических систем, которые используются для создания высокопроизводительных процессов производства полиолефинов.
5.1.1. Первые представления
о механизме действия циглеровских катализаторов при полимеризации олефинов
Многообразие гипотез о механизме действия циглеровских катализаторов связано прежде всего с многообразием каталитических систем, используемых различными авторами для исследования полимеризации олефинов.
Катализаторы Циглера — Натта получаются при взаимодействии двух или нескольких компонентов, каждый из которых относится к различным классам химических соединений. В качестве основного компонента применяются соединения элементов IV—VI групп (в последнее время и VIII группы), в качестве активатора—¦ алкилы, алкилхлориды и алкилгидриды элементов I—III групп периодической системы. Кроме АОС, Циг-лером запатентованы магний-, цинк- и натрийорганиче-ские соединения, металлорганические комплексные соединения этих металлов и в дальнейшем алкоксиды этих металлов. Таким образом, в качестве активаторов используются все металлорганические соединения элементов I—III групп периодической системы элементов, которые содержат, по меньшей мере, одну связь металл-углерод на молекулу.
Предыдущая << 1 .. 35 36 37 38 39 40 < 41 > 42 43 44 45 46 47 .. 71 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама