Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Высокомолекулярная химия -> Архипова З.В. -> "Полиэтилен низкого давления: Научно-технические основы промышленного синтеза" -> 5

Полиэтилен низкого давления: Научно-технические основы промышленного синтеза - Архипова З.В.

Архипова З.В., Григорьев В.А., Веселовская Е.В., Андреева И.Н. Семенова А.С., Северова Н.Н., Шагилова А.В. Полиэтилен низкого давления: Научно-технические основы промышленного синтеза. Под редакцией А.В. Полякова — Л.: Химия, 1980. — 240 c.
Скачать (прямая ссылка): pend.djvu
Предыдущая << 1 .. 2 3 4 < 5 > 6 7 8 9 10 11 .. 71 >> Следующая

/././. Факторы, определяющие скорость полимеризации этилена
Процесс получения ПЭНД включает в себя следующие основные стадии: взаимодействие компонентов каталитического комплекса (комп-лексообразование), полимеризацию, обработку и сушку ПЭ, введение добавок, гомогенизацию, грануляцию и расфасовку. Особенности комплексообразования в значительной мере определяют дальнейшее протекание полимеризации этилена. Состав каталитического комплекса зависит от природы его компонентов и условий их взаимодействия, т. е. от температуры и продолжительности процесса комплексообразования, концентрации и мольного отношения компонентов [14, 15].
Реакции взаимодействия ТлСЦ с А1(С2Н5)3 и А1(СгН5)2С1 впервые были изучены Циглером с сотрудниками [12]. Ими было показано, что взаимодействие между указанными компонентами катализатора происходит через ряд последовательно-параллельных стадий, важнейшими из которых являются алкилирование переходного металла и его восстановление. Таким образом,
16
кинетика и глубина протекания этих реакций и, следовательно, строение каталитического комплекса определяют его активность при полимеризации этилена. Так, замена алкилалюминиевого компонента каталитического комплекса А1(С2Н5)2С1 на более сильное электронодо-норное соединение А1(С2Н5)2Н приводит к увеличению выхода ПЭ при прочих равных условиях в 3,5—4 раза. Увеличение мольной доли алкилалюминия также весьма существенно влияет на протекание полимеризации этилена [14].
На рис. 1.1 представлена зависимость выхода ПЭ от мольного отношения алюминийорганического соединения (АОС) к четыреххлористому титану. Увеличение выхода полимера (до определенного предела) с повышением мольного отношения АОС : ТЮЦ при постоянной концентрации титана объясняется, с одной стороны, связыванием примесей в сырье алюминийорганическим соединением, а с другой — изменением состава каталитического комплекса вплоть до оптимального значения энергии связи Т1—С. Характер зависимости выхода полимера от отношения взятых для реакции АОС и четыреххло-ристого титана сохраняется независимо от алкилирую-щей и восстанавливающей способности алкилалюминия. Однако абсолютные значения выхода ПЭ при одном и том же мольном отношении АОС:Т1С14 и разных ал-кильных составляющих отличаются. При постоянной концентрации АОС выход ПЭ увеличивается с повышением концентрации ТЮи.
Время и температура смешения компонентов катализатора до подачи в реакционную среду этилена также влияют на состав катализатора и, следовательно, на его активность при полимеризации этилена (рис. 1.2).
Имеет значение также концентрация смешиваемых компонентов катализатора: в случае применения разбавленных растворов снижается скорость полимеризации за счет связывания катализатора примесями растворителя; при повышенной концентрации растворов нарушается точность дозировки и затрудняется поддержание постоянной температуры вследствие выделения теплоты реакции.
Ниже приведены оптимальные условия комплексообразования для одной из каталитических систем,
17
2000
л, 0,5 W 1,5
Мольное отношение AOC:TiCI4
2,0
^"илеиа^о^ -кости (Г. г, 3>>
ческих систем: отношения АОС . Т1С14 для различных каталити-
1, r-AI(C2H5)2CI-TiCI4; 2. У-А1(С,Н,),-Т1С1,; 3. ?'-AI(»3Q.C4H9)2H-TiCl4
«»н&и*^ при продолжи,
при 25 °С (2). мин и времени комплексообразования
180
160
11 1
4) I
S Я
о в
ч о х а
40 ?
120
100
20 30 40 Температура, °С Время, мин
70
использовавшихся в первых промышленных производствах ПЭНД, А1(С2Н5)2С1 + TiCl4 [15, 16]:
Температура смешения компонентов комплекса, °С 20—30
Время смешения компонентов комплекса, мяи 15—25
Концентрация растворов ТЮ14 и АЦСгЬУгС!, г/л 35—50
Мольное отношение А1(С2Н6)2С1: Т1С14 0,6—1,7*
* В зависимости от получаемой марки ПЭНД.
Параметрами полимеризации этилена, влияющими на скорость процесса, являются температура в реакционной зоне, концентрация мономера, состав и концентрация катализатора и время контакта катализатора с мономером.
С повышением концентрации катализатора от 0,5 до 1,2 г/л выход полимера (по отношению к 1 г катализатора) остается постоянным. При дальнейшем повышении концентрации относительный выход снижается из-за трудности полного исчерпывания катализатора. При уменьшении концентрации катализатора ниже определенного предела расход катализатора на единицу массы полимера резко возрастает. При концентрации ниже «пороговой» процесс полимеризации прекращается. Значение этой пороговой концентрации зависит от наличия вредных примесей в реакционной среде и мольного отношения компонентов.
С увеличением концентрации мономера в растворителе (повышение давления от 0,1 до 1,0 МПа) скорость реакции линейно воз растает. Затем увеличение скорости несколько замед ляется.
Рис. 1.3. Кинетические кривые полиме рнзации этилена для различных алю мииийалкилов:
'-АКСэНйЬН; 2-Аис2Н5)3; 3-А|(С2Н5)2С1.
Скорость полимеризации этилена возрастает с ростом температуры. Однако при температурах, близких к температуре кипения растворителя, из-за резкого уменьшения растворимости этилена скорость полимеризации снижается. Например, при использовании в качестве растворителя гексановой фракции с температурой начала кипения 65°С температура реакции может быть не выше 50 °С. При повышении давления соответственно и температура полимеризации может быть повышена [14].
Предыдущая << 1 .. 2 3 4 < 5 > 6 7 8 9 10 11 .. 71 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама