Главное меню
Главная О сайте Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги
Аналитическая химия Ароматерапия Биотехнология Биохимия Высокомолекулярная химия Геохимия Гидрохимия Древесина и продукты ее переработки Другое Журналы История химии Каталитическая химия Квантовая химия Лабораторная техника Лекарственные средства Металлургия Молекулярная химия Неорганическая химия Органическая химия Органические синтезы Парфюмерия Пищевые производства Промышленные производства Резиновое и каучуковое производство Синтез органики Справочники Токсикология Фармацевтика Физическая химия Химия материалов Хроматография Экологическая химия Эксперементальная химия Электрохимия Энергетическая химия
Новые книги
Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 2" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 1" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 12" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 11" (Журналы)

Петрянов-соколов И.В. "Научно популярный журнал химия и жизнь выпуск 10" (Журналы)
Книги по химии
booksonchemistry.com -> Добавить материалы на сайт -> Высокомолекулярная химия -> Архипова З.В. -> "Полиэтилен низкого давления: Научно-технические основы промышленного синтеза" -> 57

Полиэтилен низкого давления: Научно-технические основы промышленного синтеза - Архипова З.В.

Архипова З.В., Григорьев В.А., Веселовская Е.В., Андреева И.Н. Семенова А.С., Северова Н.Н., Шагилова А.В. Полиэтилен низкого давления: Научно-технические основы промышленного синтеза. Под редакцией А.В. Полякова — Л.: Химия, 1980. — 240 c.
Скачать (прямая ссылка): pend.djvu
Предыдущая << 1 .. 51 52 53 54 55 56 < 57 > 58 59 60 61 62 63 .. 71 >> Следующая

5.3.5. Другие перспективные направления создания высокоактивных катализаторов
В ряде работ [156] в качестве компонентов каталитического комплекса использовались соединения переходных металлов — аналогов по электронной структуре титана и ванадия: гафния, актиния, тантала и тория. Аналогами алюминия являются галлий и таллий. Аналоги титана, ванадия и алюминия должны быть более реакционноспособными, так как энергетические уровни их валентных электронов выше, больше размеры атома и, следовательно, выше их склонность к поляризации.
Весьма перспективным является применение коллоидных систем, которые могут быть получены в случае гетерогенных систем значительным уменьшением размера частиц носителей, а в случае гомогенных каталитических систем в результате усложнения каталитического комплекса, например введением лигандов олиго-мерного типа с тем, чтобы размер частиц комплекса увеличился до 1 —100 мкм.
В коллоидных системах граница между растворителем и частицами, взвешенными в нем, представляет поверхность громадных размеров. Эта поверхность является местом наивысшей химической активности. Свойство коллоидных частиц изменять форму под влиянием соединений различных металлов (К, Иа, Са, Мд) создает возможность регулирования формы и размера час-¦тиц синтезируемого полимера, поскольку частицы полимера в определенной мере воспроизводят форму частиц катализатора. Так, введение нафтената магния в каталитическую систему А1(С2Н5)2С1—УО(ОС2Н5)з
189
позволяет изменять форму и размеры частиц полимера в зависимости от количества вводимой добавки.
Одним из перспективных направлений работ по созданию новых высокоэффективных катализаторов полимеризации этилена и других олефинов является способ одновременного закрепления на носителе двух или более различных соединений переходных металлов. Часто одно из соединений металла переменной валентности выступает в качестве лиганда основного металла. Варьируя таким образом состав и строение катализатора, удается целенаправленно регулировать целый ряд свойств получаемых полимеров, в первую очередь молекулярно-мас-совое распределение.
К сожалению, поиски и подбор новых комплексных катализаторов осуществляются полуэмпирическим путем. До сих пор не существует достаточно обоснованной теории научного подбора катализаторов.
Рассмотренные нами некоторые направления показывают большие еще неиспользованные в полной мере возможности повышения эффективности катализаторов для синтеза полимеров заданной структуры и свойств. Причем разнообразие технологических процессов производства ПЭНД требует разработки конкретных катализаторов для каждого из них. Это является основой дальнейшего технического прогресса в производстве ПЭНД.
ЗАКЛЮЧЕНИЕ
ПЕРСПЕКТИВЫ В мировом производстве пла-РАЗВИТИЯ стмасс доля полиолефинов не-ПРОИЗВОДСТВА прерывно возрастает и в на-
ПОЛИЭТИЛЕНА стоящее время уже достигла 35—40% [216, с. 33]. Согласно прогнозам такой удельный вес полиолефинов в мировом выпуске пластмасс сохранится до 2000 года. Особенно быстрыми темпами развивается производство ПЭНД. Так, за каждые пять лет наблюдается увеличение производства этого полимера примерно в 2 раза. Соотношение производства ПЭВД, ПЭНД и ПП, которое к 1980 г. сложилось как 2:1:1, сохранится и в дальнейшем [4].
Есть все основания утверждать, что в ближайшие 25 лет промышленное производство ПЭНД будет развиваться в направлении освоения и дальнейшего усовершенствования процессов «II поколения» [3, 7]. Какой из процессов «II поколения»— суспензионный, растворный или газофазный —
191
займет доминирующее положение, будет определяться техническим уровнем каждого из этих процессов.
Определяющая роль в развитии производства ПЭНД, как и раньше, остается за катализаторами. В последние годы ведутся поиски каталитических систем, принципиально отличающихся от известных. К таким системам относятся, в частности, иммобилизованные на полимерных носителях («гетерогенизированные» каталитические системы) [214]. Представляют существенный интерес однокомпонентные катализаторы, работающие при повышенных температурах (до 200 °С), а также бифункциональные катализаторы [61]. Исследования в области высокоактивных каталитических систем полимеризации олефинов примыкают к общей проблеме катализа — использованию каталитических систем, близких к биокатализаторам— ферментам [195, 196].
Далеко не исчерпаны еще и потенциальные возможности каталитических систем на основе металлоргани-ческих комплексных соединений. Их реализация может привести к созданию принципиально новых технологических схем и процессов. К таким процессам относится каталитическая полимеризация в аппаратах «идеального вытеснения», проведение полимеризации в среде жидкого этилена, использование плазменной и лазерной техники. Все эти направления еще далеко не дошли до промышленной реализации и потребуют немалых усилий для разработки.
В последние годы на ряде фирм ведутся интенсивные работы по созданию унифицированного процесса производства ПЭ как высокой, так и низкой плотности. Фирмы «Юнион Карбайд», «Дюпон», «Дау Кемикл» (США) сообщают о разработке процессов, позволяющих получать при умеренных давлениях и температурах в присутствии особых комплексных катализаторов ПЭ низкой плотности. Фирма «Юнион Карбайд» разработала такие катализаторы для газофазной полимеризации этилена, а «Дау Кемикл» — для растворного и суспензионного процессов. Фирма «CDF Chemie» (Франция) сообщила о начале промышленного выпуска ПЭ высокой плотности в трубчатом реакторе установки ПЭВД с использованием металлорганических комплексных катализаторов. Однако ни один из перечисленных новых способов получения ПЭ не может претендовать на уни-
Предыдущая << 1 .. 51 52 53 54 55 56 < 57 > 58 59 60 61 62 63 .. 71 >> Следующая

Авторские права © 2011 BooksOnChemistry. Все права защищены.
Реклама